• امروز : یکشنبه, ۲ اردیبهشت , ۱۴۰۳
  • برابر با : Sunday - 21 April - 2024
امروز 0
1

هوش مصنوعی برای داروسازی بزرگ می آید

  • کد خبر : 10513
  • ۰۶ بهمن ۱۴۰۲ - ۱۸:۵۸
هوش مصنوعی برای داروسازی بزرگ می آید
و ممکن است طراحی درمان شگفت انگیز بعدی به پایان برسد.

هوش مصنوعی برای داروسازی بزرگ می آید

به گزارش اپست به نقل از انجگت ، اگر همه ما می توانیم روی یک چیز توافق داشته باشیم، این است که کاپیتان های صنعت قرن بیست و یکم در تلاش هستند تا هوش مصنوعی را در هر گوشه ای از جهان ما جابجا کنند. اما با وجود تمام روش‌هایی که هوش مصنوعی به چهره ما نشان داده می‌شود و موفقیت چندانی به دست نمی‌آورد، ممکن است حداقل یک هدف مفید داشته باشد. به عنوان مثال، با سرعت بخشیدن به فرآیند اغلب چندین دهه طراحی، یافتن و آزمایش داروهای جدید.
کاهش خطر یک مفهوم سکسی نیست، اما ارزش این را دارد که بفهمیم شکست یک پروژه دارویی جدید چقدر رایج است. برای تنظیم صحنه، در نظر بگیرید که هر پروژه دارویی بین سه تا پنج سال طول می کشد تا یک فرضیه به اندازه کافی قوی برای شروع آزمایشات در آزمایشگاه شکل بگیرد.
یک مطالعه در سال ۲۰۲۲ توسط پروفسور Duxin Sun نشان داد که ۹۰ درصد توسعه داروهای بالینی با شکست مواجه می شود و هر پروژه بیش از ۲ میلیارد دلار هزینه دارد. و این تعداد حتی شامل ترکیباتی که در مرحله پیش بالینی غیرقابل اجرا هستند نیز نمی شود. به زبان ساده، هر داروی موفقی باید حداقل ۱۸ میلیارد دلار ضایعات تولید شده توسط خواهر و برادرهای ناموفق خود را تامین کند، که البته تضمین می‌کند که درمان‌های کم‌درآمد برای شرایط نادرتر به اندازه‌ای که ممکن است مورد نیاز باشد، مورد توجه قرار نگیرد.
دکتر نیکولا ریچموند معاون هوش مصنوعی در Benevolent است، یک شرکت بیوتکنولوژی که از هوش مصنوعی در فرآیند کشف دارو استفاده می کند. او سیستم کلاسیک را توضیح داد که محققان وظیفه دارند، برای مثال، یک پروتئین بد رفتار – علت بیماری – را پیدا کنند و سپس مولکولی را پیدا کنند که می تواند باعث رفتار آن شود.
هنگامی که آنها یکی را پیدا کردند، باید آن مولکول را به شکلی درآورند که بیمار می تواند داشته باشد، و سپس آزمایش کنند که آیا هم ایمن و هم مؤثر است. سفر به آزمایش‌های بالینی روی یک بیمار زنده سال‌ها طول می‌کشد، و اغلب تنها پس از آن است که محققان متوجه می‌شوند آنچه در تئوری کار می‌کرد در عمل کار نمی‌کند.
دکتر کریس گیبسون، یکی از بنیانگذاران Recursion، شرکت دیگری در فضای کشف داروی هوش مصنوعی، گفت: فرآیند کنونی برای هر دارویی که تایید شده بیش از یک دهه و چندین میلیارد دلار سرمایه گذاری تحقیقاتی نیاز دارد.
او می‌گوید که مهارت بزرگ هوش مصنوعی ممکن است در طفره رفتن از اشتباهات و جلوگیری از گذراندن طولانی مدت محققان در کوچه‌های کور باشد. به گفته گیبسون، یک پلتفرم نرم افزاری که می تواند صدها گزینه را در یک زمان تغییر دهد، می تواند “سریعتر و زودتر از کار بیفتد تا بتوانید به سمت اهداف دیگر بروید.”
هوش مصنوعی برای داروسازی بزرگ می آید
دکتر آن ای. کارپنتر موسس آزمایشگاه کارپنتر سینگ در موسسه Broad MIT و هاروارد است. او بیش از یک دهه را صرف توسعه تکنیک‌هایی در نقاشی سلولی کرده است، راهی برای برجسته کردن عناصر موجود در سلول‌ها، با رنگ‌ها، تا آنها را با کامپیوتر قابل خواندن کند. او همچنین یکی از توسعه‌دهنده‌های Cell Profiler است، پلتفرمی که محققان را قادر می‌سازد تا از هوش مصنوعی برای تمیز کردن مجموعه‌های عظیمی از تصاویر آن سلول‌های رنگ‌شده استفاده کنند.
در مجموع، این کار باعث می‌شود که دستگاه به راحتی ببیند که سلول‌ها وقتی تحت تأثیر بیماری یا درمان قرار می‌گیرند، چگونه تغییر می‌کنند. و با نگاه کلی نگر به هر بخش از سلول – رشته ای که به عنوان “omics” شناخته می شود – فرصت های بیشتری برای ایجاد انواع اتصالاتی که سیستم های هوش مصنوعی در آنها برتری دارند، وجود دارد.
استفاده از تصاویر به‌عنوان راهی برای شناسایی درمان‌های بالقوه، کمی سمت چپ به نظر می‌رسد، زیرا ظاهر چیزها همیشه نشان‌دهنده وضعیت واقعی چیزها نیست، درست است؟ کارپنتر می‌گوید که انسان‌ها همیشه پیش‌فرض‌هایی ناخودآگاه در مورد وضعیت پزشکی تنها از روی دید داشته‌اند. او توضیح داد که بیشتر مردم ممکن است تنها با نگاه کردن به صورتش به این نتیجه برسند که ممکن است یک فرد مشکل کروموزومی داشته باشد.
و پزشکان حرفه ای می توانند تعدادی از اختلالات را صرفاً از طریق بینایی و صرفاً در نتیجه تجربه خود شناسایی کنند. او اضافه کرد که اگر از صورت همه افراد در یک جمعیت معین عکس بگیرید، یک کامپیوتر می‌تواند الگوها را شناسایی کرده و آنها را بر اساس ویژگی‌های مشترک مرتب کند.
این منطق در مورد تصاویر سلول ها اعمال می شود، جایی که یک آسیب شناس دیجیتالی امکان مقایسه تصاویر نمونه های سالم و بیمار را دارد. اگر انسان بتواند این کار را انجام دهد، استفاده از رایانه برای تشخیص این تفاوت‌ها در مقیاس تا زمانی که دقیق باشد، باید سریع‌تر و آسان‌تر باشد.
او توضیح داد: «شما اجازه می‌دهید این داده‌ها خود به خود در گروه‌ها جمع شوند و اکنون [شما] شروع به دیدن الگوها می‌کنید، وقتی ما [سلول‌ها] را با ۱۰۰۰۰۰ ترکیب مختلف، یکی یکی درمان می‌کنیم، می‌توانیم بگوییم دو ماده شیمیایی وجود دارد. واقعاً شبیه هم هستند.» و این ظاهر واقعاً شبیه به یکدیگر تصادفی نیست، بلکه به نظر می‌رسد نشان دهنده نحوه رفتار آنها باشد.
در یک مثال، کارپنتر اشاره کرد که دو ترکیب مختلف می توانند اثرات مشابهی را در یک سلول ایجاد کنند و به طور گسترده می توانند برای درمان یک بیماری استفاده شوند. اگر چنین است، ممکن است یکی از این دو – که ممکن است برای این منظور در نظر گرفته نشده باشد – عوارض جانبی مضر کمتری داشته باشد.
سپس این مزیت بالقوه وجود دارد که بتوانیم چیزی را شناسایی کنیم که نمی‌دانستیم تحت تأثیر بیماری است. این به ما این امکان را می دهد که بگوییم، هی، این خوشه از شش ژن وجود دارد، که پنج تای آن واقعاً به خوبی شناخته شده اند که بخشی از این مسیر هستند، اما ششمین، ما نمی دانستیم چه کرد، اما اکنون یک سرنخ قوی این است که در همان فرآیند بیولوژیکی دخیل است. او گفت: «شاید آن پنج ژن دیگر، به هر دلیلی، خود اهداف مستقیم عالی نباشند، شاید مواد شیمیایی به هم متصل نشوند، اما ژن ششم [می‌تواند] واقعاً برای آن عالی باشد.»
هوش مصنوعی برای داروسازی بزرگ می آید
در این زمینه، استارت‌آپ‌هایی که از هوش مصنوعی در فرآیندهای کشف دارو استفاده می‌کنند، امیدوارند که بتوانند الماس‌های پنهان شده را در دید آشکار پیدا کنند.
دکتر ریچموند گفت که رویکرد Benevolent این است که تیم یک بیماری مورد علاقه را انتخاب کند و سپس یک سوال بیولوژیکی در اطراف آن فرموله کند. بنابراین، در شروع یک پروژه، تیم ممکن است تعجب کند که آیا راه‌هایی برای درمان ALS با تقویت یا اصلاح روشی که سیستم خانه‌داری خود سلول کار می‌کند وجود دارد. (برای واضح بودن، این یک مثال کاملا فرضی است که توسط دکتر ریچموند ارائه شده است.)
سپس این سوال از طریق مدل‌های هوش مصنوعی Benevolent انجام می‌شود که داده‌ها را از منابع مختلف جمع‌آوری می‌کند. آنها سپس فهرستی رتبه‌بندی شده از پاسخ‌های بالقوه به این سؤال را تهیه می‌کنند که می‌تواند شامل ترکیبات جدید یا داروهای موجود باشد که می‌توانند متناسب با آن سازگار شوند. سپس داده‌ها به دست محققی می‌رود که می‌تواند بررسی کند، در صورت وجود، چه اهمیتی به یافته‌های آن می‌دهد.
دکتر ریچموند افزود که این مدل باید شواهدی را از منابع موجود یا منابع موجود برای حمایت از یافته‌های خود ارائه کند، حتی اگر انتخاب‌های آن خارج از میدان چپ باشد. و این که، در همه حال، یک انسان حرف آخر را در مورد اینکه چه نتایجی باید دنبال شود و با چه شدتی باید انجام شود، می زند.
وضعیت مشابهی در Recursion وجود دارد و دکتر گیبسون ادعا می‌کند که مدل آن اکنون می‌تواند پیش‌بینی کند که چگونه هر دارویی با هر بیماری بدون نیاز به آزمایش فیزیکی آن تداخل می‌کند.
این مدل اکنون در حدود سه تریلیون پیش‌بینی شکل داده است که مشکلات بالقوه را به راه‌حل‌های بالقوه آنها بر اساس داده‌هایی که قبلا جذب و شبیه‌سازی کرده است، مرتبط می‌کند. گیبسون گفت که فرآیند در این شرکت اکنون شبیه یک جستجوی وب است: محققان در یک پایانه می نشینند، «ژنی را که با سرطان سینه مرتبط است تایپ می کنند و [سیستم] همه ژن ها و ترکیبات دیگری را که [به عقیده او] مرتبط هستند پر می کند.
دکتر گیبسون گفت: «آنچه هیجان‌انگیز می‌شود این است که [ما] ژنی را می‌بینیم که هیچ‌کس تا به حال نام آن را در فهرست نشنیده است، که شبیه زیست‌شناسی بدیع است، زیرا جهان هیچ تصوری از وجود آن ندارد.» هنگامی که یک هدف شناسایی شد و یافته ها توسط انسان بررسی شد، داده ها به آزمایشگاه علمی داخلی Recursion ارسال می شود. در اینجا، محققان آزمایش‌های اولیه را انجام می‌دهند تا ببینند آیا آنچه در شبیه‌سازی یافت شده می‌تواند در دنیای واقعی تکرار شود یا خیر. دکتر گیبسون گفت که آزمایشگاه مرطوب Recursion که از اتوماسیون در مقیاس بزرگ استفاده می کند، قادر است بیش از دو میلیون آزمایش را در یک هفته کاری انجام دهد.
دکتر گیبسون گفت: «حدود شش هفته بعد، با مداخله بسیار اندک انسانی، به نتایج خواهیم رسید» و در صورت موفقیت، تیم واقعاً «سرمایه گذاری را آغاز خواهد کرد». زیرا، تا این مرحله، دوره کوتاه کار اعتبار سنجی برای شرکت هزینه “پول و زمان بسیار کمی برای بدست آوردن” داشته است.
وعده این است که، به جای یک مرحله پیش بالینی سه ساله، کل این فرآیند را می توان به چند جستجو در پایگاه داده، برخی نظارت ها و سپس چند هفته آزمایش خارج از بدن برای تأیید اینکه آیا تصورات سیستم ارزش تلاش واقعی را دارد یا خیر خلاصه می شود. برای بازجویی دکتر گیبسون گفت که معتقد است «کار مدل حیوانی به ارزش یک سال طول کشیده است و در بسیاری موارد آن را به دو ماه [فشرده] کرده است».
البته، هنوز یک داستان موفقیت مشخص وجود ندارد، هیچ درمان شگفت انگیزی وجود ندارد که هر شرکتی در این فضا بتواند به عنوان اعتباربخشی رویکرد به آن اشاره کند.
اما Recursion می‌تواند یک مثال واقعی را ذکر کند که نشان می‌دهد پلتفرم آن چقدر به موفقیت یک مطالعه انتقادی نزدیک شده است. در آوریل ۲۰۲۰، Recursion دنباله COVID-19 را از طریق سیستم خود اجرا کرد تا به درمان‌های بالقوه نگاه کند. هم داروهای مورد تایید FDA و هم کاندیداها را در آزمایشات بالینی در مراحل آخر بررسی کرد. این سیستم فهرستی از ۹ نامزد بالقوه را تهیه کرد که نیاز به تجزیه و تحلیل بیشتری دارند، که بعداً صحت هشت مورد از آنها ثابت خواهد شد. همچنین گفته شد که هیدروکسی کلروکین و ایورمکتین که هر دو در اولین روزهای همه گیری بسیار مورد توجه قرار گرفته بودند، از بین خواهند رفت.
و داروهایی با هوش مصنوعی وجود دارند که در حال حاضر تحت آزمایشات بالینی در دنیای واقعی هستند. Recursion به پنج پروژه اشاره می کند که در حال حاضر مرحله اول خود را (آزمایش در بیماران سالم) یا وارد مرحله دوم (آزمایش در افراد مبتلا به بیماری های نادر مورد نظر) آزمایش بالینی در حال حاضر دارند. Benevolent مرحله یک آزمایش BEN-8744 را آغاز کرده است، درمانی برای کولیت اولسراتیو که ممکن است به سایر اختلالات التهابی روده کمک کند.
و BEN-8744 بازدارنده‌ای را هدف قرار می‌دهد که هیچ ارتباط قبلی در تحقیقات موجود ندارد که در صورت موفقیت، به این ایده اضافه می‌کند که هوش مصنوعی می‌تواند ارتباطاتی را که انسان از دست داده است تشخیص دهد. البته، حداقل تا اوایل سال آینده که نتایج آن آزمایش‌های اولیه منتشر می‌شود، نمی‌توانیم نتیجه‌گیری کنیم.
هوش مصنوعی برای داروسازی بزرگ می آید
سوالات بی پاسخ زیادی وجود دارد، از جمله اینکه چقدر باید به هوش مصنوعی به عنوان تنها داور خط لوله کشف دارو اعتماد کنیم. همچنین سوالاتی در مورد کیفیت داده های آموزشی و سوگیری ها در منابع گسترده تر به طور کلی وجود دارد. دکتر ریچموند مسائل مربوط به سوگیری ها در منابع داده های ژنتیکی را از نظر همگنی کشت های سلولی و نحوه انجام آن آزمایش ها برجسته کرد.
به طور مشابه، دکتر کارپنتر گفت که نتایج جدیدترین پروژه او، پروژه نقاشی سلولی JUMP-Cell در دسترس عموم، بر اساس سلول‌های یک شرکت‌کننده بود. ما آن را با دلایل موجه انتخاب کردیم، اما هنوز هم یک نوع انسان و یک نوع سلول از آن یک انسان است.» در یک دنیای ایده‌آل، او طیف وسیع‌تری از شرکت‌کنندگان و انواع سلول‌ها را خواهد داشت، اما مسائل در حال حاضر بر بودجه و زمان، یا به‌طور مناسب‌تر، غیبت آنها متمرکز است.
اما، در حال حاضر، تنها کاری که می‌توانیم انجام دهیم این است که منتظر نتایج این آزمایش‌های اولیه باشیم و امیدوار باشیم که آنها به ثمر بنشینند. مانند هر کاربرد بالقوه دیگری از هوش مصنوعی، ارزش آن تا حد زیادی به توانایی آن در بهبود کیفیت کار بستگی دارد – یا به احتمال زیاد، بهبود نتیجه کسب و کار مورد نظر. با این حال، اگر هوش مصنوعی بتواند پس انداز را به اندازه کافی جذاب کند، آنگاه ممکن است بیماری هایی که احتمالاً در سیستم فعلی نیازهای سرمایه گذاری را جبران نمی کنند، شانسی داشته باشند.
همه اینها می تواند در یک موج تبلیغاتی از بین برود، یا ممکن است امید واقعی را به خانواده هایی که در هنگام مواجهه با یک اختلال نادر برای کمک تلاش می کنند، ایجاد کند.
فروشگاه کوکوهوم
لینک کوتاه : https://www.appest.ir/?p=10513

برچسب ها

ثبت دیدگاه

مجموع دیدگاهها : 0در انتظار بررسی : 0انتشار یافته : 0
قوانین ارسال دیدگاه
  • دیدگاه های ارسال شده توسط شما، پس از تایید توسط تیم مدیریت در وب منتشر خواهد شد.
  • پیام هایی که حاوی تهمت یا افترا باشد منتشر نخواهد شد.
  • پیام هایی که به غیر از زبان فارسی یا غیر مرتبط باشد منتشر نخواهد شد.